Monthly Archives: November 2025

Advanced retrieval for your AI Apps and Agents on Azure

Advanced retrieval on Azure lets AI agents move beyond “good-enough RAG” into precise, context-rich answers by combining hybrid search, graph reasoning, and agentic query planning. This blogpost walks through what that means in practice, using a concrete retail example you can adapt to your own apps.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​learn.microsoft


Why your agents need better retrieval

Most useful agents are really “finders”:

  • Shopper agents find products and inventory.
  • HR agents find policies and benefits rules.
  • Support agents find troubleshooting steps and logs.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

If retrieval is weak, even the best model hallucinates or returns incomplete answers, which is why Retrieval-Augmented Generation (RAG) became the default pattern for enterprise AI apps.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​


Hybrid search: keywords + vectors + reranking

Different user queries benefit from different retrieval strategies: a precise SKU matches well with keyword search, while fuzzy “garden watering supplies” works better with vectors. Hybrid search runs both in parallel, then fuses them.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

On Azure, a strong retrieval stack typically includes:learn.microsoft+1​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

  • Keyword search using BM25 over an inverted index (great for exact terms and filters).
  • Vector search using embeddings with HNSW or DiskANN (great for semantic similarity).
  • Reciprocal Rank Fusion (RRF) to merge the two ranked lists into a single result set.
  • A semantic or cross-encoder reranker on top to reorder the final set by true relevance.

Example: “garden watering supplies”

Imagine a shopper agent backing a hardware store:

  1. User asks: “garden watering supplies”.
  2. Keyword search hits items mentioning “garden”, “hose”, “watering” in name/description.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​
  3. Vector search finds semantically related items like soaker hoses, planters, and sprinklers, even if the wording differs.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​
  4. RRF merges both lists so items strong in either keyword or semantic match rise together.learn.microsoft​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​
  5. A reranker model (e.g., Azure AI Search semantic ranker) re-scores top candidates using full text and query context.azure+1​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

This hybrid + reranking stack reliably outperforms pure vector or pure keyword across many query types, especially concept-seeking and long queries.argonsys​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​


Going beyond hybrid: graph RAG with PostgreSQL

Some questions are not just “find documents” but “reason over relationships,” such as comparing reviews, features, or compliance constraints. A classic example:Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

“I want a cheap pair of headphones with noise cancellation and great reviews for battery life.”Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

Answering this well requires understanding relationships between:

  • Products
  • Features (noise cancellation, battery life)
  • Review sentiment about those specific features

Building a graph with Apache AGE

Azure Database for PostgreSQL plus Apache AGE turns relational and unstructured data into a queryable property graph, with nodes like Product, Feature, and Review, and edges such as HAS_FEATURE or positive_sentiment.learn.microsoft+1​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

A typical flow in a retail scenario:

  1. Use azure_ai.extract() in PostgreSQL to pull product features and sentiments from free-text reviews into structured JSON (e.g., “battery life: positive”).Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​
  2. Load these into an Apache AGE graph so each product connects to features and sentiment-weighted reviews.learn.microsoft​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​
  3. Use Cypher-style queries to answer questions like “headphones where noise cancellation and battery life reviews are mostly positive, sorted by review count.”learn.microsoft​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

Your agent can then:

  • Use vector/hybrid search to shortlist candidate products.
  • Run a graph query to rank those products by positive feature sentiment.
  • Feed only the top graph results into the LLM for grounded, explainable answers.Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

Hybrid search and graph RAG still assume a single, well-formed query, but real users often ask multi-part or follow-up questions. Azure AI Search’s agentic retrieval solves this by letting an LLM plan and execute multiple subqueries over your index.securityboulevard+1​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

Example: HR agent multi-part question

Consider an internal HR agent:

“I’m having a baby soon. What’s our parental leave policy, how do I add a baby to benefits, and what’s the open enrollment deadline?”Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

Agentic retrieval pipeline:infoq​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

  1. Query planning
    • Decompose into subqueries: parental leave policy, dependent enrollment steps, open enrollment dates.
    • Fix spellings and incorporate chat history (“we talked about my role and region earlier”).
  2. Fan-out search
    • Run parallel searches over policy PDFs, benefits docs, and plan summary pages with hybrid search.
  3. Results merging and reranking
    • Merge results across subqueries, apply rankers, and surface the top snippets from each area.
  4. LLM synthesis
    • LLM draws from all retrieved slices to produce a single, coherent answer, citing relevant docs or links.

Microsoft’s evaluation shows agentic retrieval can materially increase answer quality and coverage for complex, multi-document questions compared to plain RAG.infoq​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​


Designing your own advanced retrieval flow

When turning this into a real solution on Azure, a pragmatic pattern looks like this:learn.microsoft+2​Advanced-retrieval-for-your-AI-Apps-and-Agents-on-Azure.pptx​

  • Start with hybrid search + reranking as the default retrieval layer for most agents.
  • Introduce graph RAG with Apache AGE when:
    • You must reason over relationships (e.g., product–feature–review, user–role–policy).
    • You repeatedly join and aggregate across structured entities and unstructured text.
  • Add agentic retrieval in Azure AI Search for:
    • Multi-part questions.
    • Long-running conversations where context and follow-ups matter.

You can mix these strategies: use Azure AI Search’s agentic retrieval to plan and fan out queries, a PostgreSQL + AGE graph to compute relational insights, and then fuse everything back into a single grounded answer stream for your AI app or agent.

From Challenges to Creativity: Highlights from Google DevFest Toronto 2025

Google DevFest Toronto 2025 was an action-packed day filled with inspiration, community, and cutting-edge technology. Held on November 15 at the Sheraton Centre Toronto Hotel, this was my first-ever Google Developers Group DevFest, and it truly lived up to the hype.

From the moment I arrived, the energy was palpable. The schedule was packed with sessions from top Google and industry speakers, hands-on workshops, and numerous opportunities to connect with Toronto’s most passionate developers and tech professionals. One of my favorite parts was diving into the Capture the Flag challenge. Tackling cryptic puzzles alongside fellow problem-solvers pushed me beyond what I thought possible. Crossing the finish line earned me some great swag, including a GDG backpack and NFC keys that I’ll proudly use.

A standout workshop was “Apps Script: Vibe-code a Gmail add-on with Gemini CLI & MCP servers.” In this session, I built a Gmail add-on that uses Vertex AI’s image model to generate unique cat images on demand inside Gmail. Working hands-on with Gemini CLI, MCP servers, gcloud, and Apps Script gave me a practical look at the future of AI-driven cloud apps. I highly recommend this lab to anyone looking to blend code, cloud services, and creativity.

The event perfectly balanced learning, networking, and fun, demonstrating the power of the local developer community and the exciting innovations coming from Google Cloud and AI. For anyone interested in the future of tech, Google DevFest Toronto is a must-attend event to supercharge your skills and connect with like-minded professionals. I’m already looking forward to next year’s experience!

Event details: November 15, 2025, Sheraton Centre Toronto Hotel, 123 Queen Street West, Toronto, ON #GDGToronto #DevFest2025

Fabric IQ + Foundry IQ: Building the Unified Intelligence Layer for Agentic Apps

Fabric IQ and Foundry IQ create a shared intelligence layer that connects data, analytics, and AI agents across your enterprise, turning raw information into contextual understanding for smarter decisions.

This unified approach eliminates silos by providing semantic consistency—agents now grasp business concepts like “Q3 sales performance” across Fabric’s OneLake and Foundry’s knowledge bases, reducing errors and speeding workflows.

Core Components of the IQ Layer

Fabric IQ adds business logic to OneLake data with Maps, Graphs, and Digital Twins, enabling spatial and relational analysis. Foundry IQ powers agentic retrieval via Azure AI Search, automating RAG pipelines for multimodal data while enforcing Purview governance.

Work IQ integrates Microsoft 365 signals like Teams conversations, creating a “one brain” for agents that blends quantitative Fabric data with qualitative context—no more hallucinations from poor grounding.

Real-World Manufacturing Example

A manufacturer models factory disruptions in Fabric IQ Graphs. Foundry IQ agents prompt: “Analyze Line 3 downtime ripple effects on orders.” The system queries live streams, predicts delays, and auto-alerts via Teams, cutting response times 70%.​​

Retail Digital Twin in Action

Retailers use Fabric IQ Digital Twins for store IoT data. Foundry agents optimize: “Adjust shelf stock by foot traffic and sales.” Results include visuals, forecasts, and auto-reorders, lifting margins 15% with zero custom code.

Getting Started Roadmap

Enable in F64+ capacities, link via Data Agents, pilot sales/ops queries. Track insight velocity to justify scale-up.

#MicrosoftFabric #AzureAIFoundry #FabricIQ #AgenticAI


5 Practical Use Cases: Fabric Data Agents Powering Foundry HR and Sales Copilots

Fabric Data Agents bridge natural language to enterprise data, fueling Foundry copilots for HR and sales teams with secure, real-time insights.

These agents auto-generate SQL, KQL, or DAX over OneLake, letting non-technical users query without IT—perfect for high-velocity business decisions.

HR Copilot: Staffing Insights

HR prompts Foundry: “Show staffing gaps by role and region.” Data Agent scans Fabric warehouses, returns trends with turnover risks, embedded in Teams for instant action—slashing recruitment delays 40%.

Sales Performance Copilot

Sales managers ask: “Top lost deal reasons with revenue impact.” Agent pulls Fabric lakehouse transactions, generates infographics, and suggests upsell targets—boosting close rates 25%.​

Productivity Analytics

“Analyze team output vs. benchmarks.” Combines Fabric metrics with 365 signals via Foundry IQ, spotting burnout patterns for proactive interventions.

Compliance Queries

“Flag policy violations in Q4 hires.” Grounds responses in Purview-governed data for audit-ready reports.

Deployment Tips

Publish agents from lakehouses/warehouses, connect in Foundry projects. Start with 5-10 queries, measure time savings.

#MicrosoftFabric #DataAgents #Copilots #HRTech